MP Board Class 11th Maths Solutions Chapter 1 समुच्चय विविध प्रश्नावली

MP Board Class 11th Maths Solutions Chapter 1 समुच्चय विविध प्रश्नावली

प्रश्न 1.
निम्नलिखित समुच्चयों में से कौन किसका उपसमुच्चय है, इसका निर्णय कीजिए :
A = {x : x ϵ R तथा x2 – 8x + 12 = 0 को संतुष्ट करने वाली सभी वास्तविक संख्याएं x}, B = {2, 4, 6}, C = {2, 4, 6, 8….}, D = {6}.
हल:
A = {x : x ϵ R, x समीकरण x2 – 8x + 12 = 0 को संतुष्ट करता है}
अर्थात् A = {2, 6}
B = {2, 4, 6}
C = {2, 4, 6, 8….}
D = {6}
(i) समुच्चय A के अवयव 2, 6 समुच्चय B में भी हैं।
⇒ A ⊂ B.
(ii) इस प्रकार समुच्चय A के अवयव 2, 6 समुच्चय C में भी है
⇒ A ⊂ C.
(iii) समुच्चय B के अवयव 2, 4, 6 समुच्चय C में हैं।
⇒ B ⊂ C.
(iv) समुच्चय D का अवयव 6, समुच्चय A, B और C तीनों में हैं,
⇒ D ⊂ A, D ⊂ B, D ⊂ C.

प्रश्न 2.
ज्ञात कीजिए कि निम्नलिखित में से प्रत्येक कथन सत्य है या असत्य है। यदि सत्य है, तो उसे सिद्ध कीजिए। यदि असत्य है तो एक उदाहरण दीजिए।
(i) यदिx ϵ A तथा A ϵ B, तो x ϵ B
(ii) यदि A ⊂ B तथा B ϵ C, तो A ϵ C
(iii) यदि A ⊂ B तथा B ⊂ C, तो A ⊂ C
(iv) यदि A ⊄ B तथा B ⊄ C, तो A ⊄ C
(v) यदि x ϵ A तथा A ⊄ B, तो x ϵ B
(vi) यदि A ⊂ B तथा x ∉ B, तो x ∉ A
हल:
(i) असत्य : मान लीजिए A = {1}, B = {{1}, 2}
स्पष्ट है कि 1 ϵ A, A ϵ B परंतु 1 ∉ समुच्चय B क्योंकि 1 B में नहीं है। इस प्रकार दिया हुआ कथन सत्य नहीं
(ii) असत्य : मान लीजिए A = {1}, B = {1, 2} और C = {{1, 2}, 3}
समुच्चय A का अवयव समुच्चय B में हैं ∴ A ϵ B
अवयव {1, 2} समुच्चय C में हैं ” B ϵ C
पंरतु A = {1} समुच्चय C में नहीं है।
∴ कथन A ϵ C सत्य नहीं है।
(iii) सत्य : A ⊂ B ⇒ यदि x ϵ A तथा x ϵ B
परंतु B ⊂ C ⇒ यदि x ϵ B तब x ϵ C
∴ यदि x ϵ A तब x ϵ A तब x ϵ C ⇒ A ⊂ C
(iv) असत्य : मान लीजिए A = {1, 2}, B = {2, 3}, C = {1, 2, 5}
समुच्चय A के सभी अवयव 1, 2 समुच्चय B में नहीं हैं।
∴ A ⊄ D
समुच्चय B के सभी अवयव 2, 3 समुच्चय C में नहीं हैं।
∴ A ⊂ C
पंरतु समुच्चय A के सभी अवयव 1, 2 समुच्चय C में हैं।
∴ A ⊂ C
इस प्रकार दिया कथन सत्य नहीं है।
(v) समुच्चय A = {1, 2}, B = {2, 3, 4, 5}
समुच्चय A का अवयव 1, 2 समुच्चय B में नहीं है
∴ A ⊄ B
समुच्चय A का अवयव 1 समुच्चय B में नहीं हैं
∴ x ⊄ B
इस प्रकार दिया गया कथन सत्य नहीं है।
(vi) सत्य : A ⊂ B = यदि x ϵ A तब x ϵ B यदि x ∉ B तथा x ∉ A
इस प्रकार कथन A ⊂ B, x ∉ B तब x ∉A सत्य हैं।

प्रश्न 3.
मान लीजिए A, B और C ऐसे समुच्चय हैं कि A ∪ B = A ∪ C तथा A ∩ B = A ∩ C, तो दर्शाइए कि B = C.
हल:
दिया है : A ∪ B = A ∪ C
⇒ (A ∪ B) ∩ C = (A ∪ C) ∩ C
= C
⇒ [(A ∩ C) ∩ (B ∩ C) = C
⇒ (A ∩ B) ∪ (B ∩ C) = C (i) [A ∩ C= A ∩ B = दिया है]
और A ∪ B = A ∪ C
(A ∪ B) ∩ B = (A ∪ C) ∩ B
B = (A ∪ C) ∩ B
= (A ∩ B) (C ∩ B)
(A ∩ B) ∪ (B ∩ C) = B ….(ii)
(i) और (ii) से B = C प्राप्त होता है।

MP Board Solutions

प्रश्न 4.
दिखाइए कि निम्नलिखित चार प्रतिबन्ध तुल्य हैं :
(i) A ⊂ B
(ii) A – B = ϕ
(iii) A ∪ B = B
(iv) A ∩ B = A
हल:
(i) A ⊂ B अर्थात् समुच्चय A के सभी अवयव B में हैं
⇒ A – B = ϕ अर्थात (i) ⇔ (ii)
(ii) A – B = ϕ ⇔ समुच्चय A के सभी अवयव B में हैं
⇔ A ∪ B = B
अर्थात (ii) ⇔ (iii)
(iii) A ∪ B = B ⇔ समुच्चय A के सभी अवयव B में है
समुच्चय A और B मे समुच्चय A के अवयव उभयनिष्ठ है
∴ A ∩ B = A
इससे स्पष्ट है सभी कथन समान हैं।

प्रश्न 5.
दिखाइए कि यदि A ⊂ B तो C – B ⊂ C – A.
हल:
मान लीजिए x ϵ C – B = x ϵ C पंरतु x ∉ B
दिया है : A ⊂ B ⇒ यदि x ∉ B ⇒ x ∉ A
अर्थात x ϵ C और x ∉ A ⇒ x ϵ C – A
यहाँ हम पाते हैं कि
यदि x ϵ C – B तब x ϵ C – A
⇒ C – B ⊂ C – A.

प्रश्न 6.
मान लीजिए कि P(A) = P(B), सिद्ध कीजिए कि A = B.
हल:
मान लीजिए x, समुच्चय A का कोई अवयव है। तब एक उपसमुच्चय X (मान लो) ऐसा होगा जिसमे x ϵ A जिसके अनुसार
∴ X ⊂ A X ϵ P(A)
⇒ X ϵ P(B) [∴ P(A) = P(B)]
∴ X ⊂ B या x ϵ B
अर्थात यदि x ϵ A तब x ϵ B D A ⊂ B
∵ y समुच्चय B का कोई अवयव हो, तब
समुच्चय B का कोई उपसमुच्चय Y (मान लो) होगा जिससे y ϵ Y
तब Y ⊂ B = Y ϵ P(B)
⇒ Y ϵ P(A) [∵ P(A) = P(B)]
⇒ Y ⊂ A
⇒ यदि y ϵ B तब Y ϵ A
⇒ B ⊂ A …(ii)
समीकरण (i) और (ii) से, हम पाते हैं

MP Board Solutions

प्रश्न 7.
किन्हीं भी समुच्चयों A तथा B के लिए क्या यह सत्य है कि P(A) ∪ P(B) = P(A ∪ B) ? अपने उत्तर का औचित्य बताइए।
हल:
मान लीजिए
A = {a}, B = {b}, और A ∪ B = {a, b}
P(A) = {ϕ, {a}}, P(B) = {ϕ, {b}}
P(A) ∪ P(B) = {ϕ, {a}, {b}} …(i)
अब A ∪ B = {a, b}
∴ P(A ∪ B) = {ϕ, {a}, {b}, {a, b}} …(ii)
समी (i) और (ii) से हम देखते हैं कि
अतः P(A) ∪ P(B) ≠ P(A ∪ B).

प्रश्न 8.
किन्हीं दो समुच्चयों A तथा B के लिए सिद्ध कीजिए कि
A = (A ∩ B) ∪ (A – B) और A ∪ (B – A) = A ∪ B.
हल:
(i) दायाँ पक्ष = (A ∩ B) ∪ (A – B)
= (A ∩ B) ∪ (A ∩ B) [∴ A – B = A ∩ B’]
= (A ∩ (B ∪ B’) (वितरण गुण से)
= A ∩ U (यहाँ U सार्वत्रिक समुच्चय)
= A .
अतः (A ∩ B) (A – B) = A.
बायाँ पक्ष = A ∪ (B – A)
= A ∪ (B ∩ A’) [∴ B – A = B ∩ A’]
= (A ∪ B) ∩ (A ∪ A) (वितरण गुण से)
= (A ∪ B) ∩ U [यहाँ U सार्वत्रिक समुच्चय]
= A ∪ B
अतः A ∪ (B – A) = A ∪ B.

प्रश्न 9.
समुच्चयों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए कि
(i) A ∪ (A ∩ B) = A
(ii) A ∩ (A ∪ B) = A.
हल:
(i) बायाँ पक्ष = A ∪ (A ∩ B)
= (A ∪ A) (A ∪ B) (वितरण गुण से)
= A ∩ (A ∪ B) (∴ A ∪ A = A)
= A [∴ A ⊂ A ∪ B]
∴ A ∪ (A ∩ B) = A.

(ii) बायाँ पक्ष = A ∩ (A ∪ B)
= (A ∩ A) ∪ (A ∩ B) [वितरण गुण से]
= A ∪ (A ∩ B) [∴ A ∩ A = A]
= A [∴ A ∩ B ⊂ A]
अतः A ∩ (A ∪ B) = A.

MP Board Solutions

प्रश्न 10.
दिखलाइए कि A ∩ B = A ∩ C का तात्पर्य B = C आवश्यक रूप से नहीं होता।
हल:
मान लीजिए A = {1, 2}, B = {1, 7} तथा C = {1, 4} हो, तब
A ∩ B = {1, 2} ∩ {1, 7} = {1}
A ∩ C = {1, 2} ∩ {1, 4} = {1}
⇒ A ∩ B = A ∩ C
परंतु B ≠ C
⇒ यदि A ∩ B = A ∩ C तो आवश्यक नहीं है कि B = C.

प्रश्न 11.
मान लीजिए कि A और B समुच्चय हैं। यदि किसी समुच्चय x के लिए A ∪ X = B ∪ X = ϕ तथा A ∪ X = B ∪ X तो सिद्ध कीजिए कि A = B.
हल:
दिया है A ∪ X = B ∪ X, जब कि X कोई समुच्चय है।
⇒ A ∩ (A ∪ X) = A ∩ (B ∪ X) [A ⊂ A ∪ X, ∴ A ∩ (A ∪ X) = A]
⇒ A = A ∩ (B ⊂ X)
= (A ∩ B) ∪ (A ∩ A) [वितरण गुण से]
= (A∩ B) U ϕ (∴ दिया है, A ∩ x = ϕ)
= A ∩ B
⇒ A ⊂ B …(i)
पुनः A ∪ X = B ∪ X
⇒ B ∩ (A ∪ X) = B ∩ (B ∪ X)
⇒ B ∩ (A ∪ X) = B [∴ B ⊂ B ∪ X]
⇒ (B ∩ A) ∪ (B ∩ X) = B [वितरण गुण से]
⇒ (B ∩ A) ∪ ϕ = B [दिया है: B ∩ X = ϕ]
⇒ (B ∩ A) = B
⇒ B ⊂ A …..(ii)
समी. (i) और (ii) से, हम पाते हैं कि A = B.

प्रश्न 12.
ऐसे समुच्चय A, B और C ज्ञात कीजिए ताकि A ∩ B, B ∩ C तथा A ∩ C आरिक्त समुच्चय हों और A ∩ B ∩ C = ϕ.
हल:
मान लीजिए A = {1, 2}, B = {2, 3}, C = {1, 3}
A ∩ B = {1, 2} ∩ {2, 3} = {2}
B ∩ C = {2, 3} ∩ {1, 3} = {3}
C ∩ A = {1, 3} ∩ {1, 2} = {1}
अतः A ∩ B, B ∩ C, C ∩ A रिक्त समुच्चय नहीं हैं।
A ∩ B ∩ C = (A ∩ B) ∩ C
= {2} ∩ {1, 3} = ϕ.

MP Board Solutions

प्रश्न 13.
किसी विद्यालय के 600 विद्यार्थियों के सर्वेक्षण से ज्ञात हुआ कि 150 विद्यार्थी चाय, 225 विद्यार्थी कॉफी तथा 100 विद्यार्थी चाय और कॉफी दोनों पीते हैं। ज्ञात कीजिए कि कितने विद्यार्थी न तो चाय पीते हैं और न कॉफी पीते हैं।
हल:
मान लीजिए T और C चाय तथा कॉफी पीने वाले विद्यार्थियों के समुच्चय हों, तब
n(T) = 150, n(C) = 225, n(T ∩ C) = 100
n(T ∪ C) = n(T) + n(C) – n(T ∩ C)
= 150 + 225 – 100
= 275
= उन विद्यार्थियों की संख्या जो चाय या कॉफी पीते हैं या चाय और कॉफी दोनों पीते हैं।
विद्यार्थियों की कुल संख्या = 600
∴ उन विद्यार्थियों की संख्या जो चाय या कॉफी कुछ भी नहीं पीते
= 600 – 275 = 325.

प्रश्न 14.
विद्यार्थियों के समूह में, 100 विद्यार्थी हिन्दी, 50 विद्यार्थी अंग्रेजी तथा 25 विद्यार्थी दोनों भाषाओं को जानते हैं। विद्यार्थियों में से प्रत्येक या तो हिन्दी या अंग्रेजी जानता है। समूह में कुल कितने विद्यार्थी हैं?
हल:
पाना H तथा E क्रमशः हिन्दी और अंग्रेजी जानने वालों के समुच्चय हों, तब
n(H) = 100, n(E) = 50, n(H ∩ E) = 25
∴ n(H ∪ E) = n(H) + n(E) – n(H ∩ E)
= 100 + 50 – 25
=125
उन विद्यार्थियों की संख्या जो हिन्दी या अंग्रेजी जानते हैं = 125.

प्रश्न 15.
60 लोगों के सर्वेक्षण में पाया गया कि 25 लोग समाचार पत्र H, 26 लोग समाचार पत्र T, 26 लोग समाचार पत्र I, 9 लोग H तथा I दोनों, 11 लोग H तथा T दोनों, 8 लोग T तथा । दोनों और 3 लोग तीनों ही समाचार पत्र पढ़ते हैं, तो निम्नलिखित ज्ञात कीजिए :
(i) कम से कम एक समाचार पत्र पढ़ने वालों की संख्या।
(ii) ठीक ठीक केवल एक समाचार पत्र पढ़ने वालों की संख्या।
हल:
कुल लोगों की संख्या जिनका सर्वेक्षण किया गया = 60
H समाचार पत्र पढ़ने वालों की संख्या, n (H) = 25
T समाचार पत्र पढ़ने वालों की संख्या, n (T) = 26
समाचार पत्र पढ़ने वालों की संख्या, n (I) = 26
MP Board Class 11th Maths Solutions Chapter 1 समुच्चय विविध प्रश्नावली img-1
H और I समाचार पत्र पढ़ने वालों की संख्या, n (H ∩ I) = 9
H और T समाचार पत्र पढ़ने वालों की संख्या, n (H ∩ T) = 11
T और I समाचार पत्र पढ़ने वालों की संख्या, n (T ∩ I) = 8
तीनों समाचार पत्र पढ़ने वालों की संख्या, n (H ∩ T ∩ I) = 3
H और I समाचार पत्र पढ़ने वाले तथा T समाचार पत्र न पढ़ने वालों की संख्या = 9 – 3 = 6
H और T समाचार पत्र पढ़ने वाले तथा I समाचार पत्र न पढ़ने वालों की संख्या = 11 – 3 = 8
T और I समाचार पत्र पढ़ने वाले तथा H समाचार पत्र न पढ़ने वालों की संख्या = 8 – 3 = 5
केवल H समाचार पत्र पढ़ने वालों की संख्या = 25 – 8 – 6 – 3 = 8
केवल T समाचार पत्र पढ़ने वालों की संख्या = 26 – 8 – 3 – 5 = 10
केवल I समाचार पत्र पढ़ने वालों की संख्या = 26 – 6 – 3 – 5 = 12
कम से कम एक समाचार पत्र पढ़ने वालों की संख्या
= केवल एक समाचार पत्र पढ़ने वालों की संख्या + केवल दो समाचार पत्र पढ़ने वालों की संख्या + तीनों समाचार पत्र पढ़ने वालों की संख्या
= (8 + 10 + 12) + (8 + 6 + 5) + 3 = 30 + 19 + 3
= 52
वैकल्पिक विधि :
n(H ∪ T ∪ I) = n(H) + n(T) + n(I) – n(H ∩ T) = n(T ∩ I)- n(H ∩ I) + n(H ∩ T ∩ I)
= 25 + 26 + 26 – 11 – 8 – 9 + 3
= 77 – 28 + 3 = 80 – 28 = 52
(ii) केवल H और T समाचार पत्र पढ़ने वालों की संख्या = 11 – 3 = 8
केवल T औरI समाचार पत्र पढ़ने वालों की संख्या = 8 – 3 = 5
केवल I और H समाचार पत्र पढ़ने वालों की संख्या = 9 – 3 = 6
तीनों समाचार पत्र पढ़ने वालों की संख्या = 3
केवल एक समाचार पत्र पढ़ने वालों की संख्या = 52 – (8 + 5 + 6 + 3)
= 52 – 22 = 30.

MP Board Solutions

प्रश्न 16.
एक सर्वेक्षण में पाया गया कि 21 लोग उत्पाद A,26 लोग उत्पाद B, 29 लोग उत्पाद पसंद करते हैं। यदि 14 लोग उत्पाद A तथा B, 12 लोग उत्पाद C तथा A, 14 लोग उत्पाद B तथा C और 8 लोग तीनों ही उत्पादों को पसंद करते हैं ज्ञात कीजिए कि कितने लोग केवल उत्पाद C को पसंद करते हैं?
हल:
दिया है n(A) = 21, n(B) = 26
और n(C) = 29
n(A ∩ B) = 14, n(A ∩ C) = 12
n(B ∩ C) = 14, n(A ∩ B ∩ C) = 8
अब n(A ∪ C) = 12, n(A ∩ B ∩ C) = 8
MP Board Class 11th Maths Solutions Chapter 1 समुच्चय विविध प्रश्नावली img-2
∴ n(केवल A और C) = 12 – 8 = 4
∴ n(केवल B और C) = 14 – 8 = 6
∴ (केवल C) = n(C) – n (केवल A और C) – n (केवल B और C) – n(A ∩ B ∩ C)
= 29 – 4 – 6 – 8 = 29 – 18 = 11.

MP Board Class 11th Maths Solutions