MP Board Class 6th Maths Solutions Chapter 3 संख्याओं के साथ खेलना Ex 3.7
पाठ्य-पुस्तक पृष्ठ संख्या # 72
प्रश्न 1.
रेणु 75 किग्रा और 69 किग्रा भारों वाली दो खाद की बोरियाँ खरीदती है। भार के उस बट्टे का अधिकतम मान ज्ञात कीजिए जो दोनों बोरियों के भारों को पूरा-पूरा माप ले।
हल :
दोनों बोरियों के भारों को पूरा-पूरा मापने के लिए अधिकतम भार म. स. होगा।
∴75 = 3 x 5 x 5
69 = 3 x 23
∴सार्व गुणनखण्ड = 3, अत : म. स. = 3
अतः अधिकतम भार = 3 किग्रा
प्रश्न 2.
तीन लड़के एक ही स्थान से एक साथ कदम उठाकर चलना प्रारम्भ करते हैं। उनके कदमों की माप क्रमश: 63 सेमी, 70 सेमी और 77 सेमी है। इनमें से प्रत्येक कितनी न्यूनतम दूरी तय करे कि वह दूरी पूरे-पूरे कदमों में तय हो जाए?
हल :
प्रत्येक द्वारा तय की गई दूरी उनके कदमों का ल. स. होगी।
अतः
∴ल. स. = 2 x 3 x 3 x 5 x 7 x 11 = 6930
∴अभीष्ट न्यूनतम दूरी = 6930 सेमी
प्रश्न 3.
किसी कमरे की लम्बाई, चौड़ाई और ऊँचाई क्रमश: 825 सेमी, 675 सेमी और 450 सेमी हैं। ऐसा सबसे लम्बा फीता (tape) ज्ञात कीजिए जो कमरे की तीनों विमाओं (dimensions) को पूरा-पूरा माप ले।
हल :
फीते की अधिकतम लम्बाई 825, 675 और 450 का म. स. होगी।
∴825 = 3 x 5 x 5 x 11
675 = 3 x 3 x 3 x 5 x 5
450 = 2 x 3 x 3 x 5 x 5
∴म. स. = 3 x 5 x 5 = 75
अत: फीते की अधिकतम लम्बाई = 75 सेमी
प्रश्न 4.
6,8 और 12 से विभाज्य तीन अंकों की सबसे छोटी संख्या ज्ञात कीजिए।
हल :
तीन अंकों की सबसे छोटी संख्या = 100
तीन अंकों की सबसे छोटी संख्या जो 6, 8 और 12 से पूर्णतः विभाजित हो उनका ल. स. है।
∴ल. स. = 2 x 2 x 2 x 3 = 24
24 के सभी गुणज 6, 8 और 12 से विभाज्य होंगे। लेकिन हमें 3 अंकों का 24 का सबसे छोटा गुणज चाहिए।
अब 100 से बड़ी और 24 से पूर्णतया विभाज्य संख्या = (100 – 4) + 24 = 120
अत: अभीष्ट संख्या = 120
प्रश्न 5.
8, 10 और 12 से विभाज्य तीन अंकों की सबसे बड़ी संख्या ज्ञात कीजिए।
हल :
8, 10 और 12 का ल. स. :
∴ल. स. = 2 x 2 x 2 x 3 x 5 = 120
चूँकि 120 के सभी गुणज 8, 10 और 12 से भी विभाज्य होंगे।
अब 3 अंकों की सबसे बड़ी संख्या = 999
∴999 – 39 = 960 जो कि 120 का गुणज है।
अत : अभीष्ट संख्या = 960
प्रश्न 6.
तीन विभिन्न चौराहों की ट्रैफिक लाइट (traffic lights) क्रमशः प्रत्येक 48 सेकण्ड, 72 सेकण्ड और 108 सेकण्ड बाद बदलती है। यदि वे एक साथ प्रातः 7 बजे बदलें, तो वें पुनः एक साथ कब बदलेंगी?
हल :
अभीष्ट समय 48,72 और 108 का ल. स. होगा।
ल. स. = 2 x 2 x 2 x 2 x 3 x 3 x 3 = 432 सेकण्ड
अत : अभीष्ट न्यूनतम समय जब लाइटें दोबारा अपने आप बदलेंगी = 432 सेकण्ड = 7 मिनट 12 सेकण्ड
इसलिए वे दोबारा 7 बजकर 7 मिनट और 12 सेकण्ड पर बदलेंगी।
प्रश्न 7.
तीन टैंकरों में क्रमशः 403 लीटर, 434 लीटर और 465 लीटर डीजल है। उस बर्तन की अधिकतम धारिता ज्ञात कीजिए जो इन तीनों टैंकरों के डीजल को पूरा-पूरा माप देगा।
हल:
403 = 13 x 31
434 = 2 x 7 x 31
645 = 3 x 5 x 31
∴म. स. = सार्व गुणनखण्ड = 31
अत: बर्तन की अधिकतम अभीष्ट धारिता = 31 लीटर
प्रश्न 8.
वह सबसे छोटी संख्या ज्ञात कीजिए जिसे 6, 15 और 18 से भाग देने पर प्रत्येक दशा में 5 शेष रहे।
हल:
∴ल. स. = 2 x 3 x 3 x 5 = 90
अत : अभीष्ट संख्या = 90 + 5 = 95
प्रश्न 9.
चार अंकों की सबसे छोटी संख्या ज्ञात कीजिए जो 18, 24 और 32 से विभाज्य है।
हल:
∴ल. स. = 2 x 2 x 2 x 2 x 2 x 3 x 3 = 288
चार अंकों की सबसे छोटी संख्या = 1000
∴4 अंकों की सबसे छोटी संख्या जो 288 से विभाज्य हो
= 1000 – 136 + 288
= 1152
अत : अभीष्ट संख्या = 1152
प्रश्न 10.
निम्नलिखित संख्याओं का ल. स. ज्ञात कीजिए जिनमें एक संख्या सदैव 3 का गुणज है :
(a) 9 और 4
(b) 12 और 5
(c) 6 और 5
(d) 15 और 4
प्राप्त ल. स. में एक सामान्य गुण का अवलोकन कीजिए। क्या ल. स. प्रत्येक स्थिति में दोनों संख्याओं का गुणनफल है? क्या हम यह निष्कर्ष निकाल सकते हैं कि दो संख्याओं का ल. स. सदैव 3 का एक गुणज है।
हल :
(a)
∴ल. स. = 2 x 2 x 3 x 3 = 36
9 और 4 का गुणनफल = 9 x 4 = 36
∴4 और 9 का ल. स.= 9 और 4 का गुणनफल
(b)
∴ल. स.= 2 x 2 x 3 x 5 = 60
12 और 5 का गुणनफल = 12 x 5 = 60
∴12 और 5 का ल. स. = 12 और 5 का गुणनफल
(c)
∴ल. स. = 2 x 3 x 5 = 30
6 और 5 का गुणनफल = 6 x 5 = 30
∴6 और 5 का ल. स. = 6 और 5 का गुणनफल
(d)
∴ल. स. = 2 x 2 x 3 x 5 = 60
15 और 4 का गुणनफल = 15 x 4 = 60
∴15 और 4 का ल. स. = 15 और 4 का गुणनफल
हम पाते हैं कि
36 = 3 x 12,
60 = 3 x 20,
30 = 3 x 10
यहाँ प्रत्येक स्थिति ल. स. 3 का गुणज है।
हाँ, प्रत्येक स्थिति में ल. स. = दो संख्याओं का गुणनफल
हम यह निष्कर्ष नहीं निकाल सकते कि दो संख्याओं का ल. स. सदैव 3 का गुणज होता है।
प्रश्न 11.
निम्नलिखित संख्याओं का ल. स. ज्ञात कीजिए जिनमें एक संख्या दूसरी संख्या का एक गुणनखण्ड
(a) 5, 20
(b) 6, 18
(c) 12, 48
(d) 9, 45
प्राप्त परिणामों में आप क्या देखते हैं?
हल :
(a)
∴ल. स. = 2 x 2 x 5 = 20
(b)
∴ल. स. = 2 x 3 x 3 = 18
(c)
∴ल. स. = 2 x 2 x 2 x 2 x 3 = 48
(d)
∴ल. स. = 3 x 3 x 5 = 45
प्राप्त परिणामों से स्पष्ट है कि प्रत्येक स्थिति में दी हुई नंख्याओं का ल. स. उन दोनों में से बड़ी संख्या है।