MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना Ex 16.2

MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना Ex 16.2

प्रश्न 1.
यदि 21y5, 9 का एक गुणज है, जहाँ y एक अंक है, तोy का मान क्या है?
हल:
क्योंकि 21y5, 9 का एक गुणज है।
इसलिए अंकों का योग = 2 + 1 + y + 5 = 8 + y, 9 का गुणज है।
∴ (8 + y), 0, 9, 18, 27 में से कोई एक संख्या होगी।
परन्तु y एक अंक है, इसलिए y + 8 = 9
या y = 9 – 8 = 1

MP Board Solutions

प्रश्न 2.
यदि 3155, 9 का एक गुणज है, जहाँ : एक अंक है, तो का मान क्या है? आप देखेंगे कि इसके दो उत्तर हैं। ऐसा क्यों है?
हल:
क्योंकि 31z5, 9 का एक गुणज है।
इसलिए अंकों का योग = 3 + 1 + z + 5 = 9 + z, 9 का गुणज है।
∴ (9 + z), 0, 9, 18, 27 में से कोई एक संख्या होगी।
परन्तु z एक अंक है, इसलिए 9 + z = 9, 18, …
अर्थात् 9 + z = 9 या z = 0, 9 + z = 18 या z = 9
इसलिए, z = 0 और = 9
उत्तर यहाँ अंक 0 और 9 दोनों ही अंक क्रमशः संख्या 3105 तथा 3195 बनाते हैं, ये संख्याएँ 9 से विभाज्य हैं।

प्रश्न 3.
यदि 24x, 3 का एक गुणज है, जहाँ x एक अंक है, तोx का मान क्या है?
हल:
क्योंकि 24x, 3 का गुणज है, इसलिए इसके अंकों का योग 6 + x, 3 का एक गुणज है। अर्थात् 6 + x निम्नलिखित में से कोई एक संख्या होगी –
0, 3, 6, 9, 12, 15, 18, …..
परन्तु चूँकि x एक अंक है, इसलिए 6 + x = 6 या 6 + x = 9 या 6 + x = 12 या 6 + x = 15 हो सकता है। अतः x = 0 या 3 या 6 या 9 हो सकता है। इसलिए x का मान इन चारों विभिन्न मानों में से कोई एक हो सकता है।
इसलिए x = 0, 3, 6 या 9

MP Board Solutions

प्रश्न 4.
31:5, 3 का एक गुणज है, जहाँ : एक अंक है, तो का मान क्या हो सकता है?
हल:
क्योंकि 3125, 3 का गुणज है, इसलिए इसके अंकों का योग 9 + z, 3 का एक गुणज है। अर्थात् 6 + x निम्नलिखित में से कोई एक संख्या होगी –
0, 3, 6, 9, 12, 15, 18,…
परन्तु चूँकि x एक अंक है, इसलिए 9 + z = 9 या 9 + z = 12 या 9+ z = 15 या 9 + z = 18 हो सकता है। अतः z = 0 या 3 या 6 या 9 हो सकता है। इसलिए z का मान इन चारों विभिन्न मानों में से कोई एक हो सकता है।
इसलिए 2 = 0, 3, 6 या 9

MP Board Class 8th Maths Solutions